Mathematics

Grade 5 – Year at a Glance

2018 - 2019

<table>
<thead>
<tr>
<th>Module 1</th>
<th>Module 2</th>
<th>Module 3</th>
<th>Module 4</th>
<th>Module 5</th>
<th>Module 6</th>
<th>Module 6 (cont')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 6 – Sept. 7</td>
<td>Sept. 11- Nov. 5</td>
<td>Nov. 6 – Dec. 11</td>
<td>Jan. 7-Feb. 19</td>
<td>Feb. 21 – Mar. 29</td>
<td>Apr. 1 – April 16 (Through Mid Module)</td>
<td>Apr. 22 - May 23</td>
</tr>
<tr>
<td>Place Value and Decimal Fractions</td>
<td>Multi-Digit Whole Number and Decimal Fraction Operations</td>
<td>Additions and Subtraction of Fractions</td>
<td>Multiplication and Division of Fractions and Decimal Fractions</td>
<td>Addition and Multiplication with Volume and Area</td>
<td>Problem Solving with the Coordinate Plane</td>
<td>Material covered after Mid Module Assessment are extensions of 5th grade standards or review of previously taught skills</td>
</tr>
<tr>
<td>5.NBT.A.1</td>
<td>5.OA.A.1</td>
<td>5.NF.A.1</td>
<td>5.OA.A.1</td>
<td>5.NF.B.4b</td>
<td>5.OA.A.2</td>
<td>5.OA.B.3</td>
</tr>
<tr>
<td>5.NBT.A.2</td>
<td>5.OA.A.2</td>
<td>5.NF.A.2</td>
<td>5.OA.A.2</td>
<td>5.NF.B.6</td>
<td>5.OA.B.3</td>
<td>5.G.A.1</td>
</tr>
<tr>
<td>5.NBT.A.3</td>
<td>5.NBT.A.1</td>
<td>5.NF.B.7</td>
<td>5.NBT.B.7</td>
<td>5.MD.C.3</td>
<td>5.G.A.1</td>
<td>5.G.A.2</td>
</tr>
<tr>
<td>5.NBT.B.7</td>
<td>5.NBT.B.5</td>
<td>5.NF.B.4a</td>
<td>5.MD.C.5</td>
<td>5.NF.B.6</td>
<td>5.G.B.3</td>
<td>5.G.B.3</td>
</tr>
<tr>
<td>5.MD.A.1</td>
<td>5.NBT.B.6</td>
<td>5.NF.B.7</td>
<td>5.NF.B.7</td>
<td>5.MD.A.1</td>
<td>5.MD.8.2</td>
<td>5.MD.8.2</td>
</tr>
<tr>
<td>5.MD.A.1</td>
<td>5.NBT.B.7</td>
<td>5.MD.A.1</td>
<td>5.MD.8.2</td>
<td>5.MD.8.2</td>
<td>5.MD.8.2</td>
<td>5.MD.8.2</td>
</tr>
</tbody>
</table>

Key:

- **Major Content**
- **Supporting Content**

Note: Please use this suggested pacing as a guide. It is understood that teachers may be up to 1 week ahead or 1 week behind depending on the needs of their students.

Use the instructional map and the following guide as you prepare to teach a module for additional guidance in planning, pacing, and suggestions for omissions.

Pacing and Preparation Guide (Omissions)
Introduction

Destination 2025, Shelby County Schools’ 10-year strategic plan, is designed not only to improve the quality of public education, but also to create a more knowledgeable, productive workforce and ultimately benefit our entire community.

What will success look like?

In order to achieve these ambitious goals, we must collectively work to provide our students with high quality, college and career ready aligned instruction. The Tennessee State Standards provide a common set of expectations for what students will know and be able to do at the end of a grade. The State of Tennessee provides two sets of standards, which include the Standards for Mathematical Content and The Standards for Mathematical Practice. The Content Standards set high expectations for all students to ensure that Tennessee graduates are prepared to meet the rigorous demands of mathematical understanding for college and career. The eight Standards for Mathematical Practice describe the varieties of expertise, habits of mind, and productive dispositions that educators seek to develop in all students. The Tennessee State Standards also represent three fundamental shifts in mathematics instruction: focus, coherence and rigor.

Instructional Shifts for Mathematics

- **Focus**: Conceptual Understanding
- **Coherence**: Procedural Fluency
- **Rigor**: Application

80% of seniors will be college-or career-ready
90% of students will graduate on time
100% of college-or career-ready graduates enroll in post-secondary opportunities

SCS 2018/2019
Revised 5/17/18
2 of 26
The Standards for Mathematical Practice describe varieties of expertise, habits of minds and productive dispositions that mathematics educators at all levels should seek to develop in their students. These practices rest on important National Council of Teachers of Mathematics (NCTM) “processes and proficiencies” with longstanding importance in mathematics education. Throughout the year, students should continue to develop proficiency with the eight Standards for Mathematical Practice. The following are the eight Standards for Mathematical Practice:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of them.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

This curriculum map is designed to help teachers make effective decisions about what mathematical content to teach so that ultimately our students can reach Destination 2025. Throughout this curriculum map, you will see resources as well as links to tasks that will support you in ensuring that students are able to reach the demands of the standards in your classroom. In addition to the resources embedded in the map, there are some high-leverage resources around the content standards and mathematical practice standards that teachers should consistently access. For a full description of each, click on the links below.
Structure of the Standards

Structure of the TN State Standards include:

- **Content Standards** - Statements of what a student should know, understand, and be able to do.

- **Clusters** - Groups of related standards. Cluster headings may be considered as the big idea(s) that the group of standards they represent are addressing. They are therefore useful as a quick summary of the progression of ideas that the standards in a domain are covering and can help teachers to determine the focus of the standards they are teaching.

- **Domains** - A large category of mathematics that the clusters and their respective content standards delineate and address. For example, Number and Operations – Fractions is a domain under which there are a number of clusters (the big ideas that will be addressed) along with their respective content standards, which give the specifics of what the student should know, understand, and be able to do when working with fractions.

- **Conceptual Categories** – The content standards, clusters, and domains in the 9th-12th grades are further organized under conceptual categories. These are very broad categories of mathematical thought and lend themselves to the organization of high school course work. For example, Algebra is a conceptual category in the high school standards under which are domains such as Seeing Structure in Expressions, Creating Equations, Arithmetic with Polynomials and Rational Expressions, etc.
How to Use the Maps

Overview
An overview is provided for each quarter and includes the topics, focus standards, intended rigor of the standards and foundational skills needed for success of those standards.

Your curriculum map contains four columns that each highlight specific instructional components. Use the details below as a guide for information included in each column.

Tennessee State Standards
TN State Standards are located in the left column. Each content standard is identified as Major Content or Supporting Content. A key can be found at the bottom of the map.

Content
This section contains learning objectives based upon the TN State Standards. Best practices tell us that clearly communicating measurable objectives lead to greater student understanding. Additionally, essential questions are provided to guide student exploration and inquiry.

Instructional Support
District and web-based resources have been provided in the Instructional Support column. You will find a variety of instructional resources that align with the content standards. The additional resources provided should be used as needed for content support and scaffolding.

Vocabulary and Fluency
The inclusion of vocabulary serves as a resource for teacher planning and for building a common language across K-12 mathematics. One of the goals for Tennessee State Standards is to create a common language, and the expectation is that teachers will embed this language throughout their daily lessons. In order to aid your planning, we have also included a list of fluency activities for each lesson. It is expected that fluency practice will be a part of your daily instruction. (Note: Fluency practice is not intended to be speed drills, but rather an intentional sequence to support student automaticity. Conceptual understanding must underpin the work of fluency.

Instructional Calendar
As a support to teachers and leaders, an instructional calendar is provided as a guide. Teachers should use this calendar for effective planning and pacing, and leaders should use this calendar to provide support for teachers. Due to variances in class schedules and differentiated support that may be needed for students adjustment to the calendar may be required.
Grade 5 Quarter 4 Overview

Module 5: Addition and Multiplication with volume and Area

Module 6: Problem Solving with the Coordinate Plane

The chart below includes the standards that will be addressed in this quarter, the type of rigor the standards address, and foundational skills needed for mastery of these standards. Consider using these foundational standards to address student gaps during intervention time as appropriate for students.

<table>
<thead>
<tr>
<th>Focus Grade Level Standard</th>
<th>Explicit Components of Rigor</th>
<th>Foundational Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.OA.A.2</td>
<td>Conceptual Understanding</td>
<td>5.OA.A.1</td>
</tr>
<tr>
<td>5.OA.B.3</td>
<td>Conceptual Understanding</td>
<td>4.OA.C.5, 3.OA.D.9</td>
</tr>
<tr>
<td>5.G.A.1</td>
<td>Conceptual Understanding</td>
<td>3.NF.A.2, 2.MD.B.6</td>
</tr>
<tr>
<td>5.G.A.2</td>
<td>Conceptual Understanding, Procedural Skill and Fluency, Application</td>
<td>3.NF.A.1, 2.MD.B.6</td>
</tr>
<tr>
<td>5.G.B.4</td>
<td>Conceptual Understanding</td>
<td>5.G.B.3</td>
</tr>
<tr>
<td>5.NF.B.4</td>
<td>Conceptual Understanding</td>
<td>4.NF.B.4, 3.MD.C.7</td>
</tr>
<tr>
<td>5.NF.B.6</td>
<td>Application</td>
<td>4.NBT.B.4, 4.NBT.B.6, 5.NBT.A.1, 5.NBT.B.5</td>
</tr>
<tr>
<td>5.NF.B.7</td>
<td>Conceptual Understanding</td>
<td>4.NBT.B.4, 5.NBT.A.1, 5.NF.A.1, 5.NF.B.4, 5.NG.B.7, 5.NF.B.4</td>
</tr>
<tr>
<td>5.MD.C.3</td>
<td>Conceptual Understanding</td>
<td>3.MD.C.5</td>
</tr>
<tr>
<td>5.MD.C.4</td>
<td>Conceptual Understanding</td>
<td>Introductory Concept</td>
</tr>
<tr>
<td>TN STATE STANDARDS</td>
<td>CONTENT</td>
<td>INSTRUCTIONAL SUPPORT</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Module 5 Addition and Multiplication with Volume and Area (continued from Q3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Domain: Number and Operations-Fractions
Cluster: 5.NF. B
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

<table>
<thead>
<tr>
<th>5.NF.B.4.</th>
<th>Apply and extend previous understandings of multiplication to multiply a fraction by a whole number or a fraction by a fraction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Interpret the product $\frac{a}{b} \times q$ as $a \times (q ÷ b)$ (partition the quantity q into b equal parts and then multiply by a).</td>
</tr>
<tr>
<td></td>
<td>Interpret the product $\frac{a}{b} \times q$ as $(a \times q) ÷ b$ (multiply a times the quantity q and then partition the product into b equal parts).</td>
</tr>
<tr>
<td></td>
<td>For example, use a visual fraction model or write a story context to show that</td>
</tr>
</tbody>
</table>

Topic C: Area of Rectangular Figures with Fractional Side Lengths

Essential Questions
1. How does what we measure influence how we measure?

Objectives/Learning Targets:
- **Lesson 10:** Find the area of rectangles with whole-by-mixed and whole-by-fractional number side lengths by tiling, record by drawing, and relate to fraction multiplication.
- **Lesson 11:** I can find the area of rectangles with mixed by mixed and fraction by fraction side lengths by tiling, record by drawing, and relate to fraction multiplication. (4. NF.B.4b)
- **Lesson 12:** I can measure to find the area of rectangles with fractional side lengths. (4. NF.B.4b)
- **Lesson 13:** I can multiply mixed number factors, and relate to the distributive property and the area model. (4. NF.B.4b)
- **Lesson 14-15:** I can solve real-world problems involving are of figures with fractional side lengths using visual models and/or equations. (4. NF.B.4b, 5. NF.B.6)

Eureka Parent Newsletter-Topic C
Optional Quiz- Topic C
Pacing Considerations:

Additional instructional resources for enrichment/remediation:
Remediation Guide
Ready teacher-toolbox aligned lessons:
- Lesson14 - Multiply Fractions Using an Area Model

Zearn Lessons-Mission 5
- Lesson 10: Tackling Tiles
- Lesson 11: Tiny Tiles
- Lesson 12: Fractional Sides
- Lesson 13: Fraction Dimensions
- Lesson 14: What's the Area
- Lesson 15: Dive into Dimensions

Embarc.online-Module 5
Videos:
- Multiply fractions by fractions: finding a part of a part
- Multiply by fractions: using repeated addition

I-Ready Lessons:
<table>
<thead>
<tr>
<th>TN STATE STANDARDS</th>
<th>CONTENT</th>
<th>INSTRUCTIONAL SUPPORT</th>
<th>VOCABULARY & FLUENCY</th>
</tr>
</thead>
</table>
| 2/3 x 6 can be interpreted as 2 x (6 ÷ 3) or (2 x 6) ÷ 3. Do the same with 2/3 x 4/5= 8/5. (In general, a/b x c/d=ac/bd.) | | • Multiplying Fractions to Find the Area
• Multiplying Fractions
• Multiplying a Whole Number and a Fraction | |
| b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles and represent fraction products as rectangular areas. | | Task Bank:
Chavone's Bathroom Tiles
To Multiply or not to multiply? | |
| 5.NF.B.6 Solve real-world problems involving multiplication of fractions and mixed numbers by using visual fraction models or equations to represent the problem. | | | |
Domain: Geometry

Cluster: Classify two-dimensional figures into categories based on their properties.

1. **5.G.B.3** Classify two-dimensional figures in a hierarchy based on properties. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.

Topic D: Drawing, Analysis, and Classification of Two-Dimensional Shapes

Objectives/Learning Targets:

- **Lesson 16:** I can draw trapezoids to clarify their attributes, and define trapezoids based on those attributes. (5.G.B.3, 5.G.4)
- **Lesson 17:** I can draw parallelograms to clarify their attributes, and define parallelograms based on those attributes. (5.G.B.3, 5.G.4)
- **Lesson 18:** I can draw rectangles and rhombuses to clarify their attributes, and define rectangles and rhombuses based on those attributes. (5.G.B.3, 5.G.4)
- **Lesson 19:** Draw kites and squares to clarify their attributes, and define kites and squares based on those attributes. (5.G.B.3, 5.G.4)
- **Lesson 20:** Classify two-dimensional figures in a hierarchy based on properties. (5.G.B.3, 5.G.4)
- **Lesson 21:** Draw and identify varied two-dimensional figures from given attributes. (5.G.B.3, 5.G.4)

Eureka Parent Newsletter - Topic D

Optional Quiz - Topic D

Pacing Considerations:

Combine Lessons 18 and 19.

Additional instructional resources for enrichment/remediation:

- Remediation Guide
- Ready teacher-toolbox aligned lessons:
 - Classify two-Dimensional Figures
 - Lesson 31 - Understand Properties of Two-Dimensional Figures
- Zearn Lessons-Mission 5
 - Lesson 16: Tricky Trapezoids
 - Lesson 17: Parallelogram Properties
 - Lesson 18: Rhombuses and Rectangles
 - Lesson 19: Hip to Be Square
 - Lesson 20: The Shape of Things
 - Lesson 21: Shape Reader
- Embarc.online-Module 5
 - Videos:
 - Identify quadrilaterals based on attributes
 - Classify and compare quadrilaterals
- I-Ready Lessons:
Module 6: Problem Solving with Coordinate Plans

Domain: Geometry
Cluster: Graph points on the coordinate plane to solve real-world and mathematical problems.

5.G.A.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system.

Topic A: Coordinate Systems

Essential Questions
1. What are integers and what situations can integers represent?
2. How can you describe the location of a point on a coordinate plane?
3. How can you find the distance between integers on the number line?
4. How can you graph an equation on a coordinate grid?

Eureka Parent Newsletter-Topic A
Optional Quiz: Topic A

Pacing Considerations:
Omit lessons 5 and 6.

Additional instructional resources for enrichment/remediation:
Remediation Guide
TN State Standards

Content

- **Objectives/Learning Targets:**
 - **Lesson 1:** I can construct a coordinate system on a line. (5.G.A.1)
 - **Lesson 2:** I can construct a coordinate system on a plane. (5.G.A.1)
 - **Lesson 3-4:** I can name points using coordinate pairs, and use the coordinate pairs to plot points. (5.G.A.1)
 - **Lesson 5-6:** I can investigate patterns in vertical and horizontal lines, and interpret points on the plane as distances from the axes. (5.G.A.1)

Instructional Support

- **Ready teacher-toolbox aligned lessons:**
 - Lesson28 - Understand the Coordinate Plane
- **Zearn Lessons-Mission 6**
 - Lesson1: Cool Coordinates
 - Lesson2: Coordinate Pairs
 - Lesson 3: Star Coordinates
 - Lesson 4: Lining Up
 - Lesson 6: Coordinate Plane Puzzles

- **Embarc.online-Module 6**

- **Videos:**
 - Plot points on a coordinate grid
 - Plot points on a coordinate plane

- **Task Bank:**
 - Battle Ship Using Grid Paper
<table>
<thead>
<tr>
<th>TN State Standards</th>
<th>Content</th>
<th>Instructional Support</th>
<th>Vocabulary & Fluency</th>
</tr>
</thead>
</table>

- **Major Content**: Green
- **Supporting Content**: Greenarrow
Domain: Operations and Algebraic Thinking

Cluster: Write and interpret expressions

5.OA.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.

Topic B: Patterns in the Coordinate Plane and Graphing Number Patterns from Rules

Objectives/Learning Targets:

- **Lesson 7:** I can plot points, use them to draw lines in the plane, and describe patterns within the coordinate pairs. (5.OA.2, 5.G.A.1)
- **Lesson 8:** I can generate a number pattern from a given rule, and plot the points. (5.OA.2, 5.G.A.1)
- **Lesson 9:** I can generate two number patterns from given rules, plot the points, and analyze the patterns. (5.OA.3, 5.G.A.1)
- **Lesson 10:** I can compare the lines and patterns generated by addition rules and multiplication rules. (5.OA.2, 5.OA.3, 5.G.A.1)
- **Lesson 11:** I can analyze number patterns created from mixed operations. (5.OA.2, 5.OA.3)
- **Lesson 12:** I can create a rule to generate a number pattern, and plot the points. (Topic B: Lesson 12) (5.OA.2, 5.OA.3, 5.G.A.1)

Eureka Parent Newsletter-Topic B

Optional Quiz-Topic B

Pacing Considerations:
No pacing considerations at this time.

Additional instructional resources for enrichment/remediation:
- Remediation Guide
- **Ready teacher-toolbox aligned lessons:**
 - Lesson20 - Analyze Patterns and Relationships
- **Zearn Lessons-Mission 6**
 - Lesson 7: That’s the Point
 - Lesson 8: Plot the Rule
 - Lesson 9: Lasers on a Plane
 - Lesson 10: Lines with Sparkle
- **Embarc.online-Module 6**
- **Videos:**
 - Represent a real world situation as a numerical expression
- **I-Ready Lessons:**
 - Numerical Expressions and Order of Operations
 - Analyze Patterns and Relationships
- **Task Bank:**
 - Sidewalk Patterns
TN State Standards

Cluster: Analyze patterns and relationships

5.OA.B.3 Generate two numerical patterns using two given rules. For example, given the rule “Add 3” and the starting number 0, generate terms in the resulting sequences.

- **a.** Identify relationships between corresponding terms in two numerical patterns. For example, observe that the terms in one sequence are twice the corresponding terms in the other sequence.
- **b.** Form ordered
Topic C: Drawing Figures in the Coordinate Plane

Objectives/Learning Targets

- **Lesson 13:** I can construct parallel line segments on a rectangular grid. (5.G.A.1)
- **Lesson 14:** I can construct parallel line segments, and analyze relationships of the coordinate pairs. (5.G.A.1, 5.G.A.2)
- **Lesson 15:** I can construct perpendicular line segments on a rectangular grid. (5.G.A.1)
- **Lesson 16:** I can construct perpendicular line segments, and analyze relationships of the coordinate pairs. (5.G.A.1, 5.G.A.2)
- **Lesson 17:** I can draw symmetric figures using distance and angle measure from the line of symmetry. (5.G.A.1)

Additional instructional resources for enrichment/remediation:

- **Remediation Guide**
- **Eureka Parent Newsletter:** Topic C
- **Ready teacher-toolbox aligned lessons:**
 - Lesson 29 - Graph Points in the Coordinate Plane
- **Zearn Lessons-Mission 6**
 - Lesson 14: Paris and Parallels
 - Lesson 15: Perpendicular Pals
- **Embarc.online-Module 6**

Vocabulary & Fluency

- *pairs* consisting of corresponding terms from two numerical patterns and graph the ordered pairs on a coordinate plane.
<table>
<thead>
<tr>
<th>TN STATE STANDARDS</th>
<th>CONTENT</th>
<th>INSTRUCTIONAL SUPPORT</th>
<th>VOCABULARY & FLUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).</td>
<td>Plot points on a coordinate grid</td>
<td>Plot points on a coordinate plane</td>
<td></td>
</tr>
</tbody>
</table>
Major Content:

Domain: Operations and Algebraic Thinking

Cluster: Analyze patterns and relationships

- **5.OA.B.3** Generate two numerical patterns using two given rules. For example, given the rule “Add 3” and the starting number 0, generate terms in the resulting sequences.

 a. Identify

Supporting Content:

Objectives/Learning Targets

- **Lesson 18:** I can draw symmetric figures on the coordinate plane. (Topic D: Lesson 18) *(5.G.A.2)*

- **Lesson 19:** I can plot data on line graphs and analyze trends. *(5.OA.3, 5.G.A.2)*

- **Lesson 20:** I can use coordinate systems to solve real world problems. *(5.OA.3, 5.G.A.2)*

Pacing Considerations:

No pacing considerations at this time.

Additional instructional resources for enrichment/remediation:

- Eureka Parent Newsletter - Topic D
- Remediation Guide
- Ready teacher-toolbox aligned lessons:
 - Lesson29 - Graph Points in the Coordinate Plane
- Zearn Lessons-Mission 6
 - Lesson 18: Stella Symmetry
- Embarc.online-Module 6
relationship between corresponding terms in two numerical patterns. For example, observe that the terms in one sequence are twice the corresponding terms in the other sequence.

b. Form ordered pairs consisting of corresponding terms from two numerical patterns and graph the ordered pairs on a coordinate plane.
Topic E: Multi-Step Word Problems

Objectives/Learning Targets

Lesson 21-25: I can make sense of complex, multi-step problems and persevere in solving them. Share and critique peer solutions.

<table>
<thead>
<tr>
<th>TN STATE STANDARDS</th>
<th>CONTENT</th>
<th>INSTRUCTIONAL SUPPORT</th>
<th>VOCABULARY & FLUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pacing Considerations:

No pacing considerations at this time

Additional instructional resources for enrichment/remediation:

- **Remediation Guide**
- **Zearn Lessons-Mission 6**
 - Lesson 21: Perplexing Problems Part 1
 - Lesson 22: Perplexing Problems Part 2
 - Lesson 23: Perplexing Problems Part 3
 - Lesson 24: Perplexing Problems Part 4
- **Embarc.online-Module 6**
Topic F: The Years in Review: A Reflection on A Story of Units

Objectives/Learning Targets

- **Lesson 26-27:** I can solidify writing and interpreting numerical expressions. *(5.OA.A.2)*
- **Lesson 28:** I can solidify fluency with Grade 5 skills.
- **Lesson 29-30:** I can solidify the vocabulary of geometry.

Pacing Considerations:

- No pacing considerations at this time

Additional instructional resources for enrichment/remediation:

- **Remediation Guide**
- **Zearn Lessons-Mission 6**
 - Lesson 26: Far Out Expressions
 - Lesson 27: Word Problem Wheel
<table>
<thead>
<tr>
<th>TN STATE STANDARDS</th>
<th>CONTENT</th>
<th>INSTRUCTIONAL SUPPORT</th>
<th>VOCABULARY & FLUENCY</th>
</tr>
</thead>
</table>
| Lesson 31: | I can explore the Fibonacci sequence. | Lesson 28: Fluency Round Up
| Lesson 32: | I can explore patterns in saving money.
| Lesson 33-34: | I can design and construct boxes to house materials for summer use.
| | | Embarc.online-Module 6 |

Major Content

- **Supporting Content**
<table>
<thead>
<tr>
<th>TN STATE STANDARDS</th>
<th>CONTENT</th>
<th>INSTRUCTIONAL SUPPORT</th>
<th>VOCABULARY & FLUENCY</th>
</tr>
</thead>
</table>

- **Major Content**
- **Supporting Content**
Resource Toolbox

The Resource Toolbox provides additional support for comprehension and mastery of grade-level skills and concepts. These resources were chosen as an accompaniment to modules taught within this quarter. Incorporated materials may assist educators with grouping, enrichment, remediation, and differentiation.

NWEA MAP Resources

- https://teach.mapnwea.org/assist/help_map/ApplicationHelp.htm#UsingTestResults/MAPReportsFinder.htm - Sign in and Click the Learning Continuum Tab – this resources will help as you plan for intervention, and differentiating small group instruction on the skill you are currently teaching. (Four Ways to Impact Teaching with the Learning Continuum)
- https://support.nwea.org/khanri - These Khan Academy lessons are aligned to RIT scores.

Textbook Resources

- Great Minds’ Eureka Math
- Tennessee Math Standards
- Achieve the Core - Tasks
- NCTM Common Core Videos
- LearnZillion
- CCSS Video Series

Interactive Manipulatives

- http://www.eduplace.com/
- Illuminations Resources for Teaching Math
- Interactive Sites for Educators
- Math Playground: Common Core Standards
- Thinking Blocks: Computer and iPad based games
- PARCC Games
- IXL Math
- Virtual Manipulatives

Additional Sites

- Edutoolbox
- Parent Roadmap: Supporting Your Child in Grade Four Mathematics

Other

- Illustrated Mathematics Dictionary for Kids

Use this guide as you prepare to teach a module for additional guidance in planning, pacing, and suggestions for omissions.

- Pacing and Preparation Guide (Omissions)
March 2019

<table>
<thead>
<tr>
<th>Lessons for the Week</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 5 Topic A: Lesson 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Optional Quizzes: Module 5 Topic A Topic B Topic C Topic D (Quizzes should not take more than 15 minutes to administer)</td>
</tr>
<tr>
<td>Module 5 Topic B: Lessons 4-7 (Omit Lessons 5, 8 and 9) 1-day Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 5 Mid Module Assessment Flex (NWEA) Day 3-Flex (Task) Days</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>3rd Nine Week ends</td>
</tr>
<tr>
<td>Module 5 Mid Module Assessment Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 5 Topic C: Lessons 10-15 (Omit Lesson 12, Combine Lessons 14/15) Topic D: Lessons 16-17 (Combine Lesson 16-17)</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>Omit Lesson 12 Combine Lessons 14/15 and 16/17</td>
</tr>
<tr>
<td>Begin 4th Nine Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 5 Topic D: 18-21 (Combine lessons 18/19) 1-day Review End of Module Assessment</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>Combine Lessons 18/19</td>
</tr>
<tr>
<td>Module 5 End of Module Assessment Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
April 2019

<table>
<thead>
<tr>
<th>Lessons for the Week</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 6 Topic A: Lessons 1-4 (Omit Lessons 5 and 6) Topic B: Lesson 7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>Omit Lessons 5 and 6</td>
</tr>
<tr>
<td>Module 6 Topic B: Lessons 8-12</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>Optional Quizzes: Module 6 Topic A Topic B (Quizzes should not take more than 15 minutes to administer)</td>
</tr>
<tr>
<td>Module 6 1-day Review Mid Module Assessment 2-day Flex (Task) Day</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>Flex – TN Ready Testing</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>Note: Use these flex days to accommodate TN Ready testing. Math testing may not occur during this exact time – adjust your instruction according to your testing time.</td>
</tr>
<tr>
<td>Module 6 Topic C: Lessons 13-17</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Material covered after 4/16 is either an extension of 5th grade standards or a review of previously taught skills</td>
</tr>
<tr>
<td>Lessons for the Week</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Notes:</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Module 6 Topic C: Lessons 13-17</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Material covered after 4/16 is either an extension of 5th grade standards or a review of previously taught skills</td>
</tr>
<tr>
<td>Module 6 Topic D: Lessons 18-20 Topic E: Combine Lessons 21/22</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Module 6 Topic F: Lessons 28-30</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>4th Nine Week ends Admin Day</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>